Paddle飞桨部署文档
Paddle是百度开源的一款深度学习平台
基础环境
环境说明
项 | 版本 |
---|---|
GPU | NVIDA Tesla P4 |
操作系统 | ubuntu 18.04 x86_64 |
硬件规格 | 4C20G 1Mbps + 100GB |
Python | 3.7.10 |
包管理 | Anaconda 3 |
telsa驱动 | NVIDIA-Linux-x86_64-418.152.00 |
cuda驱动 | cuda_10.1.243_418.87.00_linux |
环境预设
- 检查显卡
lspci | grep -i nvidia
2.确认gcc版本,没有则安装
gcc --version
3.安装内核开发包
sudo apt-get install linux-headers-$(uname -r)
4.禁掉Nouveau驱动
echo '''blacklist nouveau
options nouveau modeset=0''' | sudo tee /etc/modprobe.d/blacklist-nouveau.conf
sudo update-initramfs -u
5.重启,检查模块是否成功禁用
sudo reboot
# 检查无输出则正常
lsmod |grep nouveau
安装 tesla驱动
-
安装dkms
sudo apt-get install dkms
-
下载驱动
http://www.nvidia.com/Download/Find.aspx
类别 选项 Product Type Data Center / Telsa Product Series P-Series Product Telsa P4 Operating System Linux 64-bit CUDA Toolkit 10.1 Language English(US) 选择
Telsa Driver for Linux 64 # 418.152.00
进行下载 -
安装
chmod +x NVIDIA-Linux-x86_64-418.152.00.run sudo ./NVIDIA-Linux-x86_64-418.152.00.run
-
验证
nvidia-smi
输出如下
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 418.152.00 Driver Version: 418.152.00 CUDA Version: 10.1 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla P4 Off | 00000000:00:09.0 Off | 0 | | N/A 24C P8 6W / 75W | 0MiB / 7611MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
安装 cuda驱动
https://cloud.tencent.com/document/product/560/8064
1.下载驱动包
wget https://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.243_418.87.00_linux.run
chmod +x cuda_10.1.243_418.87.00_linux.run
sudo bash cuda_10.1.243_418.87.00_linux.run --toolkit --samples --silent
- 配置环境变量
echo '''export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}''' | sudo tee /etc/profile.d/cuda.sh
source /etc/profile
- 重启
- 验证安装结果
cd /usr/local/cuda-10.1/samples/1_Utilities/deviceQuery
# 报错g++ not found 则按需安装g++
sudo make
./deviceQuery
返回Result=PASS 则表示安装成功
安装 anaconda
-
下载安装脚本
https://www.anaconda.com/products/individual
wget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh
-
执行安装
bash Anaconda3-2020.11-Linux-x86_64.sh
安装后重登陆加载环境变量
-
更新国内源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes
Paddle部署
创建虚拟环境
conda create -n paddle_env python=3.7
conda activate paddle_env
安装 paddle
conda install paddlepaddle-gpu==2.0.0 cudatoolkit=10.1 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
其他依赖库安装
# paddlehub不支持conda安装
# https://github.com/PaddlePaddle/PaddleHub/issues/499
pip install paddlehub
conda install shapely
conda install pyclipper
验证安装
$ python
>>> import paddle
>>> paddle.utils.run_check()
输出installed successfully
则表示安装成功
PaddlePaddle works well on 1 GPU.
PaddlePaddle works well on 1 GPUs.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.